Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems : Heterostructure Terahertz Devices

Identifieur interne : 000211 ( Russie/Analysis ); précédent : 000210; suivant : 000212

Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems : Heterostructure Terahertz Devices

Auteurs : RBID : Pascal:08-0479449

Descripteurs français

English descriptors

Abstract

This paper reviews recent advances in our original 2D-plasmon-resonant terahertz emitters. The structure is based on a high-electron-mobility transistor and featured with doubly interdigitated grating gates. The dual grating gates can alternately modulate the 2D electron densities to periodically distribute the plasmonic cavities along the channel, acting as an antenna. The device can emit broadband terahertz radiation even at room temperature from self-oscillating 2D plasmons under the DC-biased conditions. When the device is subjected to laser illumination, photo-generated carriers stimulate the plasma oscillation, resulting in enhancement of the emission. The first sample was fabricated with standard GaAs-based heterostructure material systems, achieving room temperature terahertz emission. The second sample was fabricated in a double-decked HEMT structure in which the grating gate metal layer was replaced with the semiconducting upper-deck 2D electron layer, resulting in enhancement of emission by one order of magnitude.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0479449

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems : Heterostructure Terahertz Devices</title>
<author>
<name sortKey="Otsuji, T" uniqKey="Otsuji T">T. Otsuji</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Institute of Electrical Communication, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meziani, Y M" uniqKey="Meziani Y">Y. M. Meziani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Institute of Electrical Communication, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nishimura, T" uniqKey="Nishimura T">T. Nishimura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Institute of Electrical Communication, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Suemitsu, T" uniqKey="Suemitsu T">T. Suemitsu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Institute of Electrical Communication, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Knap, W" uniqKey="Knap W">W. Knap</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research Institute of Electrical Communication, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>GES-UMR5650, Universite Montpellier 2 and CNRS</s1>
<s2>Montpellier 34095</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sano, E" uniqKey="Sano E">E. Sano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Research Center for Integrated Quantum Electronics, Hokkaido University</s1>
<s2>Sapporo 060-8628</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sapporo 060-8628</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Asano, T" uniqKey="Asano T">T. Asano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Electronics, Faculty of Information Science and Electrical Engineering, Kyushu University</s1>
<s2>Fukuoka 819-0395</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Fukuoka 819-0395</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Popov, V V" uniqKey="Popov V">V. V. Popov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institute of Radio Engineering and Electronics (Saratov Branch)</s1>
<s2>Saratov 410019</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Institute of Radio Engineering and Electronics (Saratov Branch)</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0479449</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0479449 INIST</idno>
<idno type="RBID">Pascal:08-0479449</idno>
<idno type="wicri:Area/Main/Corpus">006161</idno>
<idno type="wicri:Area/Main/Repository">006804</idno>
<idno type="wicri:Area/Russie/Extraction">000211</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0953-8984</idno>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient temperature</term>
<term>Electron mobility</term>
<term>Experimental study</term>
<term>Gallium Arsenides</term>
<term>Gallium Phosphides</term>
<term>Heterostructures</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Indium Phosphides</term>
<term>Optical materials</term>
<term>Plasma</term>
<term>Plasmonics</term>
<term>Plasmons</term>
<term>Radiation sources</term>
<term>THz range</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Plasma</term>
<term>Source rayonnement</term>
<term>Etude expérimentale</term>
<term>Domaine fréquence THz</term>
<term>Mobilité électron</term>
<term>Température ambiante</term>
<term>Hétérostructure</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Semiconducteur III-V</term>
<term>Matériau optique</term>
<term>Plasmon</term>
<term>Plasmonique</term>
<term>Indium Phosphure</term>
<term>Gallium Phosphure</term>
<term>InGaAs/GaAs</term>
<term>GaAs</term>
<term>As Ga</term>
<term>InGaP</term>
<term>0757K</term>
<term>4270N</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper reviews recent advances in our original 2D-plasmon-resonant terahertz emitters. The structure is based on a high-electron-mobility transistor and featured with doubly interdigitated grating gates. The dual grating gates can alternately modulate the 2D electron densities to periodically distribute the plasmonic cavities along the channel, acting as an antenna. The device can emit broadband terahertz radiation even at room temperature from self-oscillating 2D plasmons under the DC-biased conditions. When the device is subjected to laser illumination, photo-generated carriers stimulate the plasma oscillation, resulting in enhancement of the emission. The first sample was fabricated with standard GaAs-based heterostructure material systems, achieving room temperature terahertz emission. The second sample was fabricated in a double-decked HEMT structure in which the grating gate metal layer was replaced with the semiconducting upper-deck 2D electron layer, resulting in enhancement of emission by one order of magnitude.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>20</s2>
</fA05>
<fA06>
<s2>38</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems : Heterostructure Terahertz Devices</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OTSUJI (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MEZIANI (Y. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NISHIMURA (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SUEMITSU (T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KNAP (W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SANO (E.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ASANO (T.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>POPOV (V. V.)</s1>
</fA11>
<fA14 i1="01">
<s1>Research Institute of Electrical Communication, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>GES-UMR5650, Universite Montpellier 2 and CNRS</s1>
<s2>Montpellier 34095</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Research Center for Integrated Quantum Electronics, Hokkaido University</s1>
<s2>Sapporo 060-8628</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Electronics, Faculty of Information Science and Electrical Engineering, Kyushu University</s1>
<s2>Fukuoka 819-0395</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute of Radio Engineering and Electronics (Saratov Branch)</s1>
<s2>Saratov 410019</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>384206.1-384206.11</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000185767520060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0479449</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper reviews recent advances in our original 2D-plasmon-resonant terahertz emitters. The structure is based on a high-electron-mobility transistor and featured with doubly interdigitated grating gates. The dual grating gates can alternately modulate the 2D electron densities to periodically distribute the plasmonic cavities along the channel, acting as an antenna. The device can emit broadband terahertz radiation even at room temperature from self-oscillating 2D plasmons under the DC-biased conditions. When the device is subjected to laser illumination, photo-generated carriers stimulate the plasma oscillation, resulting in enhancement of the emission. The first sample was fabricated with standard GaAs-based heterostructure material systems, achieving room temperature terahertz emission. The second sample was fabricated in a double-decked HEMT structure in which the grating gate metal layer was replaced with the semiconducting upper-deck 2D electron layer, resulting in enhancement of emission by one order of magnitude.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B70N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Plasma</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Plasma</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Source rayonnement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Radiation sources</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>37</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>THz range</s0>
<s5>37</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>52</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>57</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>57</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Plasmon</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Plasmons</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Plasmonique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Plasmonics</s0>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>64</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>64</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InGaAs/GaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>0757K</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4270N</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fN21>
<s1>308</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000211 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000211 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:08-0479449
   |texte=   Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems : Heterostructure Terahertz Devices
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024